The Photochemistry of Taxol: Synthesis of a Novel Pentacyclic Taxol Isomer

Shu-Hui Chen *, Charles M.Combs, Susan E.Hill, Vittorio Farina and Terrence W.Doyle

Bristol-Myers Squibb Pharmaceutical Research Institute 5 Research Parkway, Wallingford CT 06492-7660 U.S.A.

Abstract: Photolysis of taxol with 254 nm UV light is found to be a very effective method to prepare a novel taxol analog featuring a Carbon-Carbon bond between C3 and C11.

The remarkable anticancer activity of taxol, 1, has stimulated an intense research effort in recent years.¹ Prompted by a study reporting that taxol can function as a direct photoaffinity labeling agent towards tubulin,² we have begun an examination of the photochemistry of taxol. Surprisingly, in view of the extensive chemical background on this important agent,¹ no report has been published on its photochemistry.

When 1 was irradiated in a Pyrex vessel (Hg lamp, 0.05M in CCl₄) a major product, isomeric with taxol, was isolated in ca. 55% yield. After extensive NMR analysis, the product was identified as 2, which contains a new bond between C_3 and C_{11} . (Scheme 1).

Specifically, the ¹H-NMR spectrum featured the disappearance of a methyl singlet at 1.79 δ , with the appearance of a new methyl doublet at 0.90 δ , indicating saturation of the C₁₁-C₁₂ double bond. The signal due to H-2, a doublet in taxol, was now a singlet at δ 5.56, while the absorption for H-3 (3.77 δ in taxol) was missing. Further data are shown in the Table. The reaction most likely proceeds through the T₁(π , π *) of the C9 carbonyl group, which leads to diradicaloid species 4 (Scheme 2), as in the first step of the oxadi- π -methane rearrangement.³ Intramolecular hydrogen transfer from C₃ to C₁₂, as observed in the related rearrangement of taxinine,⁴ occurs due to the favorable geometry.⁵ Finally, transannular bond formation in 5 leads to 2.

Not surprisingly in view of the dramatic change in topology brought about by the transannular reaction, isomer 2 displays very poor (>100 weaker than taxol) antimitotic activity *in vitro*. Further studies are in progress.

Acknowledgements: We thank Dr. S. Mamber for performing the tubulin polymerization assay.

Proton(s)	Taxol	Compound 2	Proton(s)	Taxol	Compound 2
H-2	5.67 (d)	5.56 (s)	H-13	6.23 (m)	5.60 (m)
H-3	3.77 (d)	none	H-14	2.35;2.28 (m)	3.08;2.14 (m)
H-5	4.94 (d)	5.98 (br d)	H-16	1.14 (s)	0.98 (s)
H-6	2.54;1.88 (m)	2.26;1.88 (m)	H-17	1.24 (s)	1.27 (s)
H-7	4.40 (m)	4.41 (m)	H-18	1.79 (s)	0.90 (d,J=7.2)
H-10	6.26 (s)	5.97 (s)	H-19	1.68 (s)	1.69 (s)
H-12	none	2.38 (m)	H-20	4.25 (AB)	4.48 (AB)

Table: Diagnostic ¹H-NMR comparison between taxol and compound 2 (CDCl3, 300 MHz, ppm).

REFERENCES

- (1) Kingston, D.G.I. Pharmac. Ther. 1991, 52, 1.
- (2) Rao, S.; Horwitz, S.B.; Ringel, I. J. Natl. Cancer Inst. 1992, 84, 785.
- (3) Houk, K.N. Chem. Rev. 1976, 76, 1.
- (4) Kobayashi, T.; Kurono, M.; Sato, H.; Nakanishi, K. J. Am. Chem. Soc. 1972, 94, 2863.
- (5) Huang, X.L.; Dannenberg, J.J. J. Org. Chem. 1991, 56, 5421 and references therein.

(Received in USA 10 August 1992; accepted 11 September 1992)